
Requirements of ABAP Programs
in Unicode Systems

Version: July 16, 2003

Contents Page

1. Codes 3

2. ABAP Development Under Unicode 4

3. Concepts and Conventions 5
3.1 Data Types 5
3.2 Data Layout of Structures 6
3.3 Unicode Fragment View 7
3.4 Permitted Characters 7

4. Restrictions in Unicode Programs 8
4.1 Character and Numeric Type Operands 8
4.2 Access Using Offset and Length Specifications 9
4.3 Assignments 11
4.4 Comparisons 14
4.5 Processing Strings 15
4.6 Type Checks and Type Compatibility 16
4.7 Changes to Database Operations 17
4.8 Determining the Length and Distance 18
4.9 Other Changes 19

5. New ABAP Statements for Unicode 21
5.1 String Processing for Byte Strings 21
5.2 Determining the Length and Distance 22
5.3 Assignments to Field Symbols 23
5.4 Includes with Group Names 26
5.5 Creating Data Objects Dynamically 27
5.6 Assigning Fields Dynamically 28
5.7 Storing Data as Clusters 29
5.8 File Interface 30
5.9 Uploading and Downloading Files 32
5.10 Generic Types for Field Symbols and Parameters 32
5.11 Formatting Lists 32

6. New Classes for Unicode 34
 6.1 Determining Field Properties 34
 6.2 Converting Data 35

7. RFC and Unicode 36

8. Further Measures 37

9. Other Sample Programs for the Conversion to Unicode 38

10. Glossary 57

11. Index of Key Concepts 58

 2

1. Codes

In the past, SAP developers used various codes to encode characters of different
alphabets, for example, ASCII, EBCDI, or double-byte code pages.

�� ASCII (American Standard Code for Information Interchange) encodes each

character using 1 byte = 8 bit. This makes it possible to represent a maximum of
28 = 256 characters to which the combinations [00000000, 11111111] are
assigned. Common code pages are, for example, ISO88591 for West European or
ISO88595 for Cyrillic fonts.

�� EBCDIC (Extended Binary Coded Decimal Interchange) also uses 1 byte to encode
each character, which again makes it possible to represent 256 characters.
EBCDIC 0697/0500 is an old IBM format that is used on AS/400 machines for
West European fonts, for example.

�� Double-byte code pages require 1 or 2 bytes for each character. This allows you

to form 216 = 65536 combinations where usually only 10,000 - 15,000 characters
are used. Double-byte code pages are, for example, SJIS for Japanese and BIG5
for traditional Chinese.

Using these character sets, you can account for each language relevant to the SAP
System. However, problems occur if you want to merge texts from different
incompatible character sets in a central system. Equally, exchanging data between
systems with incompatible character sets can result in unprecedented situations.

One solution to this problem is to use a code comprising all characters used on
earth. This code is called Unicode (ISO/IEC 10646) and consists of at least 16 bit =
2 bytes, alternatively of 32 bit = 4 bytes per character. Although the conversion
effort for the SAP kernel and applications is considerable, the migration to Unicode
provides great benefits in the long run:

�� The Internet (www) and consequently also mySAP.com are entirely based on

Unicode, which thus is a basic requirement for international competitiveness.
�� Unicode allows all SAP users to install a central system that covers all business

processes worldwide.
�� Companies using different distributed systems frequently want to aggregate

their worldwide corporate data. Without Unicode, they would be able to do this
only to a limited degree.

�� With Unicode, you can use multiple languages simultaneously at a single
frontend computer.

�� Unicode is required for cross-application data exchange without loss of data due
to incompatible character sets. One way to present documents in the World
Wide Web (www) is XML, for example.

ABAP programs must be modified wherever an explicit or implicit assumption is
made with regard to the internal length of a character. As a result, a new level of
abstraction is reached which makes it possible to run one and the same program
both in conventional and in Unicode systems. In addition, if new characters are

 3

http://www.w3.org/

added to the Unicode character set, SAP can decide whether to represent these
characters internally using 2 or 4 bytes.

The examples presented in the following sections are based on a Unicode encoding
using 2 bytes per character.

2. ABAP Development Under Unicode

A Unicode-enabled ABAP program (UP) is a program in which all Unicode checks are
effective. Such a program returns the same results in a non-Unicode system (NUS)
as in a Unicode system (US). In order to perform the relevant syntax checks, you
must activate the Unicode flag in the screens of the program and class attributes.

In a US, you can only execute programs for which the Unicode flag is set. In future,
the Unicode flag must be set for all SAP programs to enable them to run on a US. If
the Unicode flag is set for a program, the syntax is checked and the program
executed according to the rules described in this document. This is regardless of
whether it is a Unicode or non-Unicode program. From now on, the Unicode flag
must be set for all new programs and classes that are created.

If the Unicode flag is not set, a program can only be executed in an NUS. The
syntactical and semantic changes described below do not apply to such programs.
However, you can use all language extensions that have been introduced in the
process of the conversion to Unicode.
As a result of the modifications and restrictions associated with the Unicode flag,
programs are executed in both Unicode and non-Unicode systems with the same
semantics to a large degree. In rare cases, however, differences may occur.
Programs that are designed to run on both systems therefore need to be tested on
both platforms.
Additionally, as part of the introduction of Unicode, the following modifications
have been made in the syntax check to the Unicode flag:

1. In Unicode programs, unreachable statements now cause a syntax error. In non-
Unicode programs, this previously only caused a syntax warning.

2. In Unicode programs, calling a function module, whose parameter names are
specified statically as a literal or constant, will raise an exception that can be
handled if an incorrect parameter name is specified. This only applies to
function modules that are not called via Remote Function Call. In non-Unicode
programs, an incorrect name was previously ignored.

You are recommended to follow the procedure below to make your programs US-
compliant:

�� The UNICODE task in transaction SAMT performs first an NUS and then a US
syntax check for a selected program set. For an overview of the syntax errors by
systems, programs and authors, consult the following document in SAPNet:
Alternatively, you can start the ABAP program RSUNISCAN_FINAL to determine
the Unicode-relevant syntax errors for a single program.

 4

�� Before you can set the Unicode flag in the NUS in the attributes of the program
concerned, all syntax errors must be removed.

�� Having enabled the Unicode flag in the NUS, you can run the syntax check for
this program. To display a maximum of 50 syntax errors simultaneously, choose
Utilities -> Settings -> Editor in the ABAP Editor and select the corresponding
checkbox.

�� Once all syntactical requirements are met in the NUS, you must test the program
both in the NUS and US. The purpose of this test is to recognize any runtime
errors and make sure that the results are correct in both systems. To rule out
runtime errors in advance, you should always type field symbols and parameters
so that any potential problems can be detected during the syntax check.

A BA P: Change P rogram Attributes VE R00778 X

A ttribute

Ty pe

S tatus

A pplic at ion

A uthoriz at ion G roup

P ack age

Logical Databas e

S election Sc reen V ers ion

E ditor Loc k F ix ed P oint A rithm etic

Unicode Check Ac tive S tart Using V ariant

S ave

S AB P

E x ec utable P rogram
P roduc tive S A P Standard P rogram

B as is (Sy stem)

Tit le

O riginal Language DE G erm an

Created 09.06.1999 S c hröder

Las t Changed 15.01.2000 S c hröder

S tatus A ct ive

Doc u Check

3. Concepts and Conventions
3.1 Data Types
The data types that can be interpreted as character-type in a UP include:
�� C Character (letters, numbers, special characters)
�� N Numeric character (numbers)
�� D Date
�� T Time
�� STRING Character string
�� Character type structures Structures which either directly or in substructures

 contain only fields of types C, N, D or T.

 5

In an NUS, a character of this type has a length of 1 byte, and in a US a length
corresponding to the length of one character on the relevant platform. The data
type W is no longer supported.

Variables of the types X and XSTRING are called byte-type. The main
characteristics of the different kinds of structures are:

�� Flat structures contain only fields of the elementary types C, N, D, T, F, I, P,

and X, or structures containing these types.
�� Deep structures contain strings, internal tables and field or object references in

addition to the elementary types.
�� Nested structures are structures that contain substructures as components.
�� Non-nested structures are structures that do not contain any substructures.

3.2 Data Layout of Structures

For several data types, such as I and F or object references, certain alignment
requirements are in place that depend on the platform used. Fields of these types
must begin in memory at an address divisible by 4 or 8. Character-type types must
begin at a memory address divisible by 2 or 4 depending on their Unicode
representation.
Within structures, bytes can be inserted before or after components with alignment
requirements to achieve the necessary alignment. These bytes are referred to as
alignment (A). A substructure is aligned according the field with the biggest
alignment requirement. In this case a contained substructure counts as a field.
Includes in structures are treated as substructures.
In the sample structure below that contains three fields, no alignments are created
in an NUS or US.

BEGIN OF struc1,
 a(1) TYPE X,
 b(1) TYPE X,
 c(6) TYPE C,
END OF struc1.

In the next example, however, alignments are created in a US but not in an NUS.
The first alignment gap is created because of the alignment of structure struc3, the
second because of the alignment of C field c, and the third because of the
addressing of integer d.

BEGIN OF struc2,
 a(1) TYPE X,
 BEGIN OF struc3,
 b(1) TYPE X,
 c(6) TYPE C,
 END OF struc3,
 d TYPE I,
END OF struc2.

 6

NUS a b c d

US a A b A c A d

 | struc3 |

3.3 Unicode-Fragment View

The data layout of structures is relevant to UP checks with regard to the reliability
of assignments and comparisons, for example. This data layout is represented in
the Unicode fragment view. The fragment view breaks down the structure into
alignment gaps, in byte and character-type areas, and all other types such as P, I,
F, strings, references or internal tables.

Juxtaposed character-type components of a structure except strings are internally
combined into a group if no alignment gaps exist between these components. All
possible alignment requirements for characters are considered. Juxtaposed byte
type components are grouped together in the same way.

BEGIN OF struc,
 a(2) TYPE C,
 b(4) TYPE N,
 c TYPE D,
 d TYPE T,
 e TYPE F,
 f(2) TYPE X,
 g(4) TYPE X,
 h(8) TYPE C,
 i(8) TYPE C,
END OF struc.

In the following example, F1 - F6 show the individual fragments of structure struc:

 a b c d A e f g A h i

| F1 | F2 | F3 | F4 | F5 | F6 |

3.4 Permitted Characters

In a US, all ABAP program sources are also stored as Unicode. As in ABAP Objects,
you may only use the following characters as identifiers in programs for which the
Unicode flag is set:

1. Letters a - z and A - Z without the German 'umlauts'
2. Numbers 0 - 9
3. The underscore _

For compatibility reasons, the characters %, $, ?, -, #, *, and / are also still
permitted, but they should only be used for good reason in exceptional cases. Note

 7

that the slash can only be used to separate namespaces in the form /name/. There
must be at least three characters between two slashes.

To ensure that programs can be transported from a US to a NUS without any loss of
information in the process of conversion, you should not use any characters for
comments and literals even in a US that cannot be represented in an NUS.

4. Restrictions in Unicode Programs
The adjustments you have to make and the restrictions that apply in the Unicode
context have been limited to the essentials on the ABAP development side to keep
the conversion effort for ABAP users to a minimum. In some cases, however, this
has led to the emergence of more complex rules, for example, with regard to
assignments and comparisons between incompatible structures.

4.1 Character and Numeric Type Operands

Up to now, you have been able to use flat structures as arguments of ABAP
statements wherever single fields of type C were expected. In a UP this is no longer
generally permitted. In a UP, you can use a structured field in a statement
expecting a single field only if this structured field consists of character-type
elementary types or purely character-type substructures. The structure is treated
like a single field of type C.

The main restrictions applying to a UP in contrast to an NUS result from the fact
that flat structures are only considered character-type on a limited basis, and
fields of type X or STRING are never considered character-type. In addition, flat
structures are only considered numeric-type if they are purely character-type.
Numeric-type arguments include, for example, offset or index specifications as in
READ TABLE ... INDEX i. The following examples show a structure that is character-
type and a structure that is not:

BEGIN OF struc1, BEGIN OF struc2,
 a(2) TYPE C, a(2) TYPE C,
 b(2) TYPE C, Not n(6) TYPE N, Character-
 x(1) TYPE X, character-type d TYPE D, type
 i TYPE I, t TYPE T,
END OF struc. END OF struc.

Another example is a control break in an internal table, triggered by the AT
keyword. In a NUS, fields of type X to the right of the control key are treated as
character-type, and are thus filled with an asterisk. In Unicode systems,
conversely, the same type is filled with its initial value.

 8

4.2 Access Using Offset and Length Specifications

Offset and length specifications are generally critical since the length of each
character is platform-dependent. As a result, it is initially unclear as to whether
the byte unit or the character unit is referred to in mixed structures. This forced us
to put in place certain considerable restrictions. However, access using offset or
length specifications is still possible to the degree described in the following. The
tasks subject to this rule include accessing single fields and structures, passing
parameters to subroutines and working with field symbols.

�� Single field access

Offset-based or length-based access is supported for character-type single
fields, strings and single fields of types X and XSTRING. For character-type fields
and fields of type STRING, offset and length are interpreted on a character-by-
character basis. Only for types X and XSTRING, the values for offset and length
are interpreted in bytes.

�� Structure access
Offset-based or length-based access to structured fields is a programming
technique that should be avoided. This access type results in errors if both
character and non-character-type components exist in the area identified by
offset and length.

Offset-based or length-based access to structures is only permitted in a UP if
the structures are flat and the offset/length specification includes only
character-type fields from the beginning of the structure. The example below
shows a structure with character-type and non-character-type fields. Its
definition in the ABAP program and the resulting assignment in the main
memory is as follows:

BEGIN OF STRUC,

 a(3) TYPE C, "Length 3 characters
 b(4) TYPE N, "Length 4 characters
 c TYPE D, "Length 8 characters
 d TYPE T, "Length 6 characters
 e TYPE F, "Length 8 bytes
 f(26) TYPE C, "Length 28 characters
 g(4) TYPE X, "Length 2 bytes
END OF STRUC.

 a b c d A e f g

| F1 | F2 | F3 | F4 |F5|

Internally, the fragment view contains four fragments [F1-F4]. Offset-based or
length-based access in this case is only possible in the initial part F1.
Statements like struc(21) or struc+7(14) are accepted by the ABAP interpreter
and treated like a single field of type C. By contrast, struc+57(2) access is now
only allowed in an NUP. If offset-based or length-based access to a structure is
permitted, both the offset and length specifications are generally interpreted
as characters in a UP.

 9

�� Passing parameters to subroutines

Up to now, parameter passing with PERFORM has allowed you to use cross-field
offset and length specifications. In future, this will no longer be allowed in a
UP. In a UP, offset-based and length-based access beyond field boundaries
returns a syntax or runtime error. For example, access types c+15 or c+5(10)
would trigger such an error for a ten-digit C field c.
If only an offset but no length is specified for a parameter, the entire length of
the field instead of the remaining length was previously used for access. As a
result, parameter specifications are cross-field if you use only an offset, and
therefore trigger a syntax error in a UP. PERFORM test USING c+5 is
consequently not permitted.
In addition, in a UP, you can continue to specify the remaining length starting
from the offset off for parameters using the form field+off(*).

�� Ranges for offset-based and length-based access when using field symbols

A UP ensures that offset-based or length-based access with ASSIGN is only
permitted within a predefined range. Normally, this range corresponds to the
field boundaries in case of elementary fields or, in case of flat structures, to
the purely character-type initial part. Using a special RANGE addition for
ASSIGN, you can expand the range beyond these boundaries.
Field symbols are assigned a range allowed for offset/length specifications. If
the source of an ASSIGN statement is specified using a field symbol, the target
field symbol adopts the range of the source. If not explicitly specified
otherwise, the RANGE is determined as follows:

ASSIGN field TO <f>.
In a UP, the field boundaries of field are assigned to <f> as the range, where
field is no field symbol.

ASSIGN <g> TO <f>.
<f> adopts the range of <g>.

ASSIGN elfield+off(len) TO <f>.
In a UP, the field boundaries of the elementary field elfield are assigned to <f>
as the range.

ASSIGN <elfield>+off(len) TO <f>.

<f> adopts the range of the elementary field <elfield>.

ASSIGN struc+off(len) TO <f>.
ASSIGN <struc>+off(len) TO <f>.

In a UP, the purely character-type initial part of the flat structures struc or
<struc> determines the range boundaries.

If the assignment to the field symbol is not possible because the offset or length
specification exceeds the range permitted, the field symbol is set to
UNASSIGNED in a UP. Other checks such as type or alignment checks return a
runtime error in a UP. As a rule, offset and length specifications are counted in

 10

characters for data types C, N, D, and T as well as for flat structures, and in
bytes in all other cases.

�� Offset without length specification when using field symbols

Up to now, ASSIGN field+off TO <f> has shown the special behavior that
the field length instead of the remaining length of field was used if only an
offset but not length was specified. Since an ASSIGN with a cross-field offset is
therefore problematic under Unicode, you must observe the following rules:

1. Using ASSIGN field+off(*)... you can explicitly specify the remaining

length.
2. ASSIGN <f>+off TO <g> is only permitted if the runtime type of <f> is

flat and elementary, that is, C, N, D, T (offset in characters) or X (offset in
bytes).

3. ASSIGN field+off TO <g> is generally forbidden from a syntax point of
view since any offset other than 0 would cause the range to be exceeded.
Exceptions are cases in which a RANGE addition is used.

These rules enable you also in future to pass a field symbol through an
elementary field using ASSIGN <f>+n TO <f>, as it is the case in a loop, for
example.

4.3 Assignments

This section deals with implicit and explicit type conversions using the equal sign
(=) or the MOVE statement. Two fields can be converted if the content of one field
can be assigned to the other field without triggering a runtime error.

For conversions between structured fields or a structured field and a single field,
flat structures were previously treated like C fields. With the implementation of
Unicode, this approach has become too error-prone since it is not clear if programs
can be executed with platform-independent semantics.

Two fields are compatible if they have the same type and length. If deep structures
are assigned, the fragment views must therefore be identical. One requirement in
connection with the assignment and comparison of deep structures has been that
type compatibility must exist between the operands, which requires both operands
to have the same structure. This requirement will continue to apply to Unicode
systems.

�� Conversion between flat structures
To check whether conversion is permitted at all, the Unicode fragment view of
the structures is set up initially by combining character and byte type groups
and alignment gaps as well as any other components. If the type and length of
the fragments of the source structure are identical in the length of the shorter
structure, conversion is permitted. Assignment is allowed subject to the
fulfillment of the following conditions:

 11

1. The fragments of both structures up to the second-last fragment of the
shorter structure are identical.

2. The last fragment of the shorter structure is a character or byte type group.
3. The corresponding fragment of the longer structure is a character or byte

type group with a greater length.

If the target structure is longer than the source structure, the character-type
components of the remaining length are filled with blank characters. All other
components of the remaining length are filled with the type-adequate initial
value, and alignment gaps are filled with zero bytes. Since longer structures
were previously filled with blanks by default, using initial values for non-
character-type component types is incompatible. This incompatible change is,
however, rather an error correction. For reasons of compatibility, character-
type components are not filled with initial values.

BEGIN OF struc1, BEGIN OF struc2,
 a(1) TYPE C, a(1) TYPE C,
 x(1) TYPE X, b(1) TYPE C,
END OF struc1. END OF struc2.

The assignment struc1 = struc2 is not allowed under Unicode since struc1-x in
contrast to struc2-b occupies only one byte.

BEGIN OF struc3, BEGIN OF struc4,
 a(2) TYPE C, a(8) TYPE C,
 n(6) TYPE N, i TYPE I,
 i TYPE I, f TYPE F,
END OF struc3. END OF struc4.

The assignment struc3 = struc4 is allowed since the fragment views of the
character-type fields and the integer are identical.

BEGIN OF struc5, BEGIN OF struc6,
 a(1) TYPE X, a(1) TYPE X,
 b(1) TYPE X, BEGIN OF struc0,

c(1) TYPE C, b(1) TYPE X,
END OF struc5. c(1) TYPE C,
 END OF struc0,
 END OF struc6.

struc5 = struc6 is again not permitted since the fragment views of both
structures are not identical due to the alignment gaps before struc0 and struc0-
c.

BEGIN OF struc7, BEGIN OF struc8,
 p(8) TYPE P, p(8) TYPE P,
 c(1) TYPE C, c(5) TYPE C,
END OF struc7. o(8) TYPE P,
 END OF struc8.

 12

The assignment struc7 = struc8 works since the Unicode fragment views are
identical with regard to the length of structure struc7.
For deep structures, the operand types must be compatible as usual. As an
enhancement measure, we slightly generalized the convertibility in case of
object references and table components.

�� Conversion between structures and single fields

The following rules apply for converting a structure into a single field and vice
versa:

1. If a structure is purely character-type, it is treated like a C field during
conversion.

2. If the single field is of type C, but only part of the structure is character-
type, conversion is only possible if the structure begins with a character-
type structure and if this structure is at least as long as the single field.
Conversion now takes place between the first character-type group of the
structure and the single field. If the structure is the target field, the
character type sections of the remainder are filled with blanks, and all other
components are filled with the type-adequate initial value.

3. Conversion is not permitted if the structure is not purely character-type and
if the single field is not of type C.

As with the assignment between structures, filling non-character-type
components with the initial value is incompatible.

�� Conversion between internal tables

Tables can be converted if their row types are convertible. The restrictions
described above therefore also effect the conversion of tables.

�� Implicit conversions

The above rules also apply to all ABAP statements that use implicit conversions
according to the MOVE semantics. For example, this is true for the following
statements for internal tables:

APPEND wa TO itab.
APPEND LINES OF itab1 TO itab2.

INSERT wa INTO itab.
INSERT LINES OF itab1 INTO [TABLE] itab2.

MODIFY itab FROM wa.
MODIFY itab ... TRANSPORTING ... WHERE ... ki = vi ...

READ TABLE itab ...INTO wa.
READ TABLE itab ...WITH KEY ...ki = vi ...
LOOP AT itab INTO wa.
LOOP AT itab WITH KEY ... ki = vi ...

The restrictions for explicit conversion also apply to the implicit conversion of
VALUE specifications.

 13

4.4 Comparisons

In general, the rule applies that operands that can be assigned to one another with
the MOVE statement can also be compared. An exception is object references,
which can be compared but not always assigned.

�� Comparison of flat structures

Structures can also be compared if they are not compatible. As in the MOVE
statement, the fragment views must be the same for the length of the shorter
structure. If the structures have different lengths, the shorter structure is filled
until it has the length of the other structure. As in the assignment, all
character-type components are filled with spaces and all other components
with initial values of the right type. The structures are compared fragment by
fragment as defined by the fragment view.

�� Comparison of single fields and structures

The following rules are valid when single fields are compared with structures:
1. If a structure is purely character-type, it is treated like a C field in the

comparison.
2. If the single field is of character-type, but the structure is only partly of

character-type, the comparison is only possible if the first fragment of
character-type in the structure is longer than the single field. The single
field is extended to the structure length at runtime and filled with initial
values for the comparison. The comparison is the same as for structured
fields, where the fields are filled as in the MOVE statement.

c0(10) TYPE C. c0 0

BEGIN OF struc,
 c1(15) TYPE C,
 i TYPE I,
 c2(5) TYPE C, c1 i c2 n
 n(7) TYPE N,
END OF struc.

In this example, c0 is extended to the length of struc in storage. All areas >
10 are filled with initial values of the correct type for components that are
not character-type and filled with space for other components.

�� Comparison of deep structures

As previously, mainly type compatibility of the operands is needed for
comparing deep structures. The compatibility test for comparability was
generalized so that structure components with references to classes or
interfaces can be compared with one another, whatever the class hierarchy and
implementation relation, as for single fields. Only comparability of table types
is required for table components.

 14

�� Comparison of internal tables

Tables can be compared if their row types can be compared. The restrictions
described above therefore also affect table comparisons.

4.5 Processing Strings

String processing statements, whose arguments were all interpreted as fields of
type C until now, are now divided into statements with character arguments and
those with byte arguments.

�� String processing statements
CLEAR ... WITH
CONCATENATE
CONDENSE
CONVERT TEXT ... INTO SORTABLE CODE
OVERLAY
REPLACE
SEARCH
SHIFT
SPLIT
TRANSLATE ... TO UPPER/LOWER CASE
TRANSLATE ... USING

The arguments of these instructions must be single fields of type C, N, D, T or
STRING or purely character-type structures. There is a syntax or runtime error if
arguments of a different type are passed. A subset of this function is provided
with the addition IN BYTE MODE for processing byte strings – that is, operands
of type X or XSTRING. A statement such as CONCATENATE a x b INTO c is
thus no longer possible when a, b, and c are all character-type, but x is of type
X.

TRANSLATE ... CODEPAGE ...
TRANSLATE ... NUMBER FORMAT ...

The above statements are not allowed in Unicode programs. Instead, you can
use the new conversion classes, which are described in more detail on page 37.

�� Comparison operators for string processing

CO
CN
CA
NA
CS
NS
CP
NP

As with the string processing statements, these operators need single fields of
type C, N, D, T or STRING as arguments and again purely character-type

 15

structures are allowed. Special compare operators defined with the prefix
BYTE- are provided for byte strings.

�� Functions for string processing

Function STRLEN only works with character-type fields and returns the length in
characters. The new function XSTRLEN finds the length of byte strings.

Until now, function CHARLEN returned the value1 for a text field beginning
with a single byte character under an NUS. The value 2 is returned for text
fields beginning with a double byte character. Under a US, CHARLEN returns
the value 1 if text begins with a single Unicode character. If text begins with a
Unicode double character from the surrogate area, the value 2 is returned.

Function NUMOFCHAR returns the number of characters in a string or a
character-type field. In single byte code pages, the function behaves like
STRLEN. In multi-byte code pages, characters filling more than 1 byte are
nevertheless considered to have length 1.

�� Output in fields and lists

In WRITE ... TO, any flat data types that were handled like C fields were
allowed as target. For the WRITE statement, the following rules apply in
Unicode programs: TO ... requires the target field to be of character-type. For
the table variant WRITE ... TO itab INDEX idx the line type of the table must be
of character-type. The offset and length are counted in characters.

Until now, any flat structures could be output with WRITE. If the source field is
a flat structure in a WRITE, it must have character-type only, in a UP. This
affects the following statements:

WRITE f.

WRITE f TO g[+off][(len)].

WRITE (name) TO g.

WRITE f TO itab[+off][(len)] INDEX idx.

WRITE (name) TO itab[+off][(len)] INDEX idx.

4.6 Type Checks and Type Compatibility

For historical reasons, the types of field symbols and parameters in subroutines or
function modules can be defined with the STRUCTURE addition.

�� If the types of field symbols are defined with FIELD-SYMBOLS <f>

STRUCTURE s DEFAULT wa and they are later assigned a data object wa with
ASSIGN wa TO <f> ... , in a NUP both statements are checked to see if wa
is at least as long as s and wa satisfies the alignment requirements of s at
runtime.

 16

If parameter types in function modules or subroutines are defined with FORM
form1 USING/CHANGING arg STRUCTURE s ... or FORM form2 TABLES
itab_a STRUCTURE s ... and the parameters are passed actual parameters
with PERFORM form1 USING/CHANGING wa or PERFORM form2
USING/CHANGING itab_b, the NUP also only checks if wa or the line type of
itab_b is at least as long as s and wa or the line type of itab_b satisfies the
alignment requirements of s. The same is true for function module parameters
whose types are defined with STRUCTURE.

The following extra rules are checked in a UP after defining the type with
STRUCTURE when assigning data objects, that is for the DEFAULT addition in the
FIELD-SYMBOLS statement, for ASSIGN, and when passing actual parameters.

1. If wa or the line type of itab_b is a flat or deep structure, the length of s
must be the same for the Unicode fragment views of wa or of itab_b and s.

2. If wa is a single field, only the character-types C, N, D or T are allowed and
the structure s must be purely character-type.

Checking both these rules requires additional runtime. It is therefore
recommended that, if possible, you type the parameters using TYPE, since the
test for actual compatibility is much faster.

�� If the type of an argument in a function module was defined with ... LIKE struc,
where struc is a flat structure, the NUP only checks if the argument is a flat
structure with the same length when the parameters are passed. In the UP, it
also checks that the fragment views of the current and formal parameters are
the same. For performance reasons, it is again recommended that you use TYPE
to assign types.

�� Furthermore, two structures of which one or both contain Includes, are only
compatible if the alignment gaps caused by the Include are the same on all
platforms. In the following example, struc1 and struc2 are not compatible
because a further alignment gap occurs in the US before the INCLUDE:

BEGIN OF struc1, BEGIN OF struc2, BEGIN OF struc3,
 a(1) TYPE X, a(1) TYPE X. b(1) TYPE X,
 b(1) TYPE X, INCUDE struc3. c(1) TYPE C,
 c(1) TYPE C, END OF struc2. END OF struc3.
END OF struc1.

Since the type compatibility can differ in a UP and an NUP, the type
compatibility rules of the calling program are valid in an NUS for checking the
parameters. This means that if an NUP calls a UP, the type compatibility is
defined as in the NUP. Conversely, the Unicode check is activated if a UP calls
an NUP.

4.7 Changes to Database Operations

Until now, in an NUP the data is copied to field wa or to table line itab as defined
by the structure of the table work area dbtab without taking its structure into
consideration. Only the length and alignment are checked.

 17

SELECT * FROM dbtab ... INTO wa ...
SELECT * FROM dbtab ... INTO TABLE itab ...
SELECT * FROM dbtab ... APPENDING TABLE itab ...

FETCH NEXT CURSOR c ... INTO wa.
FETCH NEXT CURSOR c ... INTO TABLE itab.
FETCH NEXT CURSOR c ... APPENDING TABLE itab.

INSERT INTO dbtab ... FROM wa.
INSERT dbtab ... FROM wa.
INSERT dbtab ... FROM TABLE itab.

UPDATE dbtab ... FROM wa.
UPDATE dbtab ... FROM TABLE itab.

MODIFY dbtab ... FROM wa.
MODIFY dbtab ... FROM TABLE itab.

DELETE dbtab FROM wa.
DELETE dbtab FROM TABLE itab.

The following rules are now valid in a UP:
If the work area or the line of the internal table is a structure, there is also a check
if the fragment views of the work area and the database table are the same up to
the length of the database table. If the work area is a single field, the field must
be character-type and the database table must be purely character-type. These
requirements are valid for all the commands mentioned above.

Only the types C, N, D, T, – and flat structures of these types – are now valid for
the version field in any statement that processes database tables (READ, MODIFY,
DELETE, LOOP) and uses the VERSION addition. Otherwise, a warning is triggered in
an NUS, and a syntax error in a US.

4.8 Determining the Length and Distance
You may no longer use the DESCRIBE DISTANCE statement to define the lengths and
distances of fields. It must be replaced with one of the new statements DESCRIBE
DISTANCE ...IN BYTE MODE or DESCRIBE DISTANCE ... IN CHARACTER
MODE.

The DESCRIBE FIELD ...LENGTH statement is also obsolete and must be
replaced with one of the new statements DESCRIBE FIELD ... LENGTH ...
IN BYTE MODE or DESCRIBE FIELD ... LENGTH ... IN CHARACTER MODE.
Until now, the DESCRIBE FIELD ... TYPE field statement returned type C
for flat structures. In a UP, type u is now returned for flat structures. This can be
queried in the ABAP source code.

There are no changes for the DESCRIBE FIELD ... TYPE ... COMPONENTS
... statement under US. Similarly, the DESCRIBE ... OUTPUT LENGTH ...
statement still returns the output length in characters.

 18

4.9 Other Changes

The following text describes the file interface, key definitions for tables and the
bit and bit mask operations. The introduction of Unicode results in the following
changes:

�� The OPEN DATASET command was completely revised In the file interface. At
least one of the additions IN TEXT MODE ENCODING, IN BINARY MODE, IN
LEGACY MODE, or IN LEGACY BINARY MODE must be defined in a UP.

In a US, you can only read and write files with READ DATASET and TRANSFER
if the file to be edited was first opened explicitly. A runtime error is triggered if
there is no OPEN statement for these statements.

 If the file was opened in TEXT MODE, only character type fields, strings and
purely character-type structures are allowed for READ DATASET dsn INTO f
for f, and the type is only checked at runtime.

The LENGTH addition defines the length of the data record in characters in
TEXT MODE. In all other cases it is defined in bytes.

�� A syntax error is triggered in a UP for the obsolete statements LOOP AT
dbtab, READ TABLE dbtab, and READ TABLE itab if the key is purely
character-type.

A syntax or runtime error is triggered for the READ TABLE itab statement if the
standard key of the internal table contains types X or XSTRING. With this READ
variant, the key that is actually used is determined by hiding all the components
filled with spaces. The comparison with SPACE must be allowed in a UP.

A syntax or runtime error is also triggered when you access the database with
generic key if the key is not purely character-type. This affects the following
commands:

READ TABLE dbtab ...SEARCH GKEQ ...
READ TABLE dbtab ...SEARCH GKGE ...
LOOP AT dbtab ...
REFRESH itab FROM TABLE dbtab.

The actual table key is determined by truncating the closing spaces of the
database key in these statements. In a UP you must make sure that all the
components of the key can be compared with SPACE.

�� Until now, there was a check in bit statements SET BIT i OF f [TO g] and
GET BIT i OF f [INTO g] to see if field f has character type, where
normally X fields, X strings and flat structures were also considered to have
character type. This no longer is meaningful in a UP because on the one hand
types X and XSTRING are no longer considered to have character-type, and on
the other hand bit-by-bit access to fields or structures of character-type is no
longer platform-independent. In an UP, field f must therefore be of type X or
XSTRING for these operations.

 19

Until now, all numeric types and thus all character types were allowed for the
left operand f in the bit mask operations f O x, f Z x and f M x. Operand f
now must have type X or XSTRING in a UP. In a UP, the operand f must have the
type X or XSTRING.

�� There are certain restrictions in UP for the following statements when adding
field strings:

ADD n1 THEN n2 UNTIL nz [ACCORDING TO sel] GIVING m ...
ADD n1 THEN n2 UNTIL nz TO m [RANGE str].

1. Operands n1, n2, and nz must have compatible types.
2. The distance between nz and n1 must be an integer multiple of the distance

between n2 and n1.
3. There is a syntax or runtime error if fields n1, n2 and nz are not in a

structure. Either the syntax check must be able to recognize this fact or its
valid range must be marked explicitly with a RANGE addition.

4. The system ensures that the RANGE area is not left at runtime.

ADD n1 FROM i1 GIVING m [RANGE str].

1. The field n1 must lie within a structure. Field n1 must lie within a structure

that must be explicitly defined with a RANGE addition if the syntax check
cannot recognize this fact.

2. This variant also checks at runtime if n1 and the addressed values lie within
the structure.

�� Loops with the VARY or VARYING addition also cause Unicode problems because
on the one hand you cannot be sure to access the contents of memory with the
correct type and on the other hand memory could be overwritten inadvertently.

DO ... VARYING f FROM f1 NEXT f2.

Fields f, f1 and f2 must have compatible types in this statement. To prevent
storage contents from being overwritten, a RANGE for valid accesses is
implicitly or explicitly introduced for the following statements:

DO ... TIMES VARYING f FROM f1 NEXT f2 [RANGE f3].
WHILE ... VARY f FROM f1 NEXT f2 [RANGE f3].

A syntax or runtime error is also triggered if f1 or f2 are not included in f3. If
the RANGE addition is missing, it is implicitly defined as follows with FROM f1
NEXT f2:

1. If the syntax check recognizes that both f1 and f2 are components of the

same structure, the valid RANGE range is defined from the smallest structure
containing f1 and f2.

2. There is a syntax error if the syntax check recognizes that f1 and f2 do not
belong to the same structure.

 20

3. A valid range must be defined explicitly with RANGE if the syntax check
cannot recognize that f1 and f2 are related.

If a deep structure is defined as RANGE addition, there is a check that there are
no field or object references, tables or strings within the range just being
scanned each time the loop is executed.

�� When subroutines are generated automatically with the GENERATE
SUBROUTINE POOL itab NAME name statement, the generated program
inherits the contents of the Unicode flag of the generating program.

�� In the INSERT REPORT statement, you can set the Unicode flag explicitly at

runtime using the UNICODE ENABLING uc addition. If this addition is omitted,
the program is characterized as follows:

1. A Unicode program generates a Unicode program
2. A non-Unicode program generates a non-Unicode program
3. A non-Unicode program becomes a Unicode program after it has been

overwritten by a Unicode program
4. A Unicode program remains a Unicode program after it has been overwritten

by a non-Unicode program

�� In the GET/SET PARAMETER ID pid FIELD f statement, f must be

character-type. You can use the EXPORT and IMPORT statements to store non-
character-type fields and structures

5. New ABAP Statements for Unicode

5.1 String Processing for Byte Strings

�� The X variants of the string statements are distinguished from the character

string commands with the IN BYTE MODE addition. The IN CHARACTER MODE
addition can be used optionally for the character string variants.

If you define the IN BYTE MODE addition, only X fields and X strings are allowed
as arguments. There is a syntax or runtime error if arguments of a different
type are passed.

CLEAR ... WITH IN BYTE MODE

CONCATENATE x1 ... xn INTO x IN BYTE MODE

FIND ... IN BYTE MODE

REPLACE ... IN BYTE MODE

REPLACE f WITH g INTO h IN BYTE MODE

SEARCH x FOR x1 IN BYTE MODE

SHIFT x ... IN BYTE MODE

SPLIT ... IN BYTE MODE

 21

The full length of the X fields are always used in all string commands for byte
strings, so that bytes with contents X'00' are never truncated at the end of the
field. There are no variants that use search patterns for the FIND, SEARCH and
REPLACE statements with the IN BYTE MODE addition.

�� The string length for byte strings can be defined with the XSTRLEN function.
XSTRLEN returns the current length for X strings and the defined length in bytes
for X fields, where null bytes at the end of fields are also counted.

�� The X variants of the string comparison operations are distinguished from the
string variants by the BYTE prefix. Only X fields and fields of type XSTRING are
allowed as arguments for these operations.

BYTE-CO

BYTE-CN

BYTE-CA

BYTE-NA

BYTE-CS

BYTE-NS

5.2 Determining the Length and Distance

The field length or the distance between two fields can be determined with the
DESCRIBE FIELD and DESCRIBE DISTANCE statements. The IN BYTE/CHARACTER
additions must be defined for the following variants under Unicode:

�� DESCRIBE FIELD f LENGTH len IN BYTE MODE.

The length of field f is determined in bytes and passed to field len.

This variant returns the length of the reference, and not the length of the
contents, for all internally referenced data types (strings as well as field and
object references). Only variant IN BYTE MODE is therefore allowed for such
fields.

�� DESCRIBE FIELD f LENGTH len IN CHARACTER MODE.

The length of field f is returned here in characters if the argument is purely
character-type. f may not have type STRING. The relevant check is performed
statically and dynamically and causes a syntax or runtime error, depending on
the type.

�� DESCRIBE DISTANCE BETWEEN a AND b INTO x IN BYTE MODE.

This statement returns the distance between fields a and b in bytes in field x.

 22

�� DESCRIBE DISTANCE BETWEEN a AND b INTO x IN CHARACTER MODE.

This statement returns the distance in characters, where the result always
refers to the start of the field. Whether or not the distance between the
arguments can be divided by the platform-specific length in characters and
whether both fields a and b have the right alignment is only checked at
runtime. Otherwise there is a runtime error.

5.3 Assignments to Field Symbols

Until now the ASSIGN statement made it possible to define addresses past field
limits by specifying the offset or length. There was only a runtime error when
addressing past the limits of the data segment. Cross-field accesses to the
offset/length in an ASSIGN, for example, could be used to edit repeating groups.
With Unicode, however, problems occur since it is not possible to ensure that
cross-field offset or length definitions can be interpreted as bytes or characters in
an identical and meaningful manner in both a US and an NUS. For this reason, the
ASSIGN statement was enhanced with the RANGE and INCREMENT additions while
the CASTING addition now supports all variants of this statement. The RANGE
addition is offered for all valid variants of ASSIGN and can be combined with the
CASTING addition.

�� ASSIGN feld1 TO <fs> RANGE feld2.

This addition explicitly sets the limits of the range. It makes it possible to
define addresses past field limits, for example to edit repeating groups with the
ASSIGN INCREMENT statement.

1. The field limits of field2 are used as the range for <fs>.

2. In a UP, the limits specified by the RANGE definition must include the range
limits that would otherwise result from the rules described above.

3. If the memory area of field1 is not completely contained in field2, there is a
catchable runtime error.

4. Field field2, which defines the range, may also be deep. Repeating groups
with deep types therefore can also be processed.

�� ASSIGN field INCREMENT n TO <fs>.

The field symbol is incremented by n times the length of field, starting with
the position defined by field.

First the range for the access is defined from the length of field and the
INCREMENT definition of the range for the access as defined by ASSIGN
fld+n*sizeof[field] (sizeof[fld]) TO <fs>. The addressed range must lie within
the range limits. If it is not possible to make the assignment because the range
limits were violated, SY-SUBRC is set to > 0 and the field symbol is not
changed.

 23

The range limits for ASSIGN field INCREMENT n TO <fs> are defined in exactly
the same way as ASSIGN field TO <fs>. The definition of the INCREMENT
therefore has no effect on the definition of the range limits.

 * Loop through an elementary field

DATA: c(10) TYPE C VALUE 'abcdefghij'.
FIELD-SYMBOLS: <cf> TYPE C.

 ASSIGN c(2) TO <cf>. "Range limits c =
 DO 5 TIMES. "Field boundaries of cf
 WRITE / <cf>.
 ASSIGN <cf> INCREMENT 1 TO <c>. "Same limits <c>
* ASSIGN <c>+2 TO <cf>. "Like ASSIGN INCREMENT
 ENDDO.

* Structured repeating group

TYPES: BEGIN OF comp,
 f1 type string,
 ...
 END OF comp.

DATA: BEGIN OF stru,
 x1(1) TYPE x,
 k1 TYPE comp,
 k2 TYPE comp,
 k3 TYPE comp,
 k4 TYPE comp,
 END OF stru.

FIELD-SYMBOLS: <comp> TYPE comp.

ASSIGN stru-k1 TO <comp> RANGE stru.

* Specify that range limits are to exceed field
* boundaries
DO 4 TIMES.
 ...
 ASSIGN <comp> INCREMENT 1 TO <comp>.
ENDDO.

 24

* Dynamic access to an
* element in a repeating group

DATA: BEGIN OF stru,
 x1(1) TYPE x,
 k1 TYPE comp,
 k2 TYPE comp,
 k3 TYPE comp,
 k4 TYPE comp,
 END OF stru,
 incr TYPE i.
FIELD-SYMBOLS: <comp> TYPE comp.

incr = 4 - 1.
ASSIGN stru-k1 INCREMENT incr TO <comp> RANGE stru.
...

 * <comp> now points to stru-k4

�� The CASTING addition is allowed for all variants of the ASSIGN statement:

ASSIGN field TO <fs> CASTING.

ASSIGN field TO <fs> CASTING TYPE type.

ASSIGN field TO <fs> CASTING TYPE (typename)

ASSIGN field TO <fs> CASTING LIKE fld.

ASSIGN field TO <fs> CASTING DECIMALS dec.

You can use ASSIGN ... CASTING to look at the contents of a field as a value of
another type using a field symbol . One application for this statement would be
to provide different views on a structure with casts on different types.

One wide-spread ABAP technique is to use C fields or structures as containers for
storing structures of different types that are frequently only known at runtime.
The components of the structure are selected with offset/length accesses to the
container. Since this technique no longer works with Unicode, you can also look
upon an existing memory area as a container with the suitable type definition
using a field symbol with the ASSIGN ... CASTING statement. In the next
example, a certain field of database table X031L is read, whereby the field and
table names are only defined at runtime.

 25

* Read a field from the table X031L

PARAMETERS:
 TAB_NAME LIKE SY-TNAME, "Table name
 TAB_COMP LIKE X031L-FIELDNAME, "Field name
 ANZAHL TYPE I DEFAULT 10. "Number of lines
DATA:

 BEGIN OF BUFFER,
 ALIGNMENT TYPE F, "Alignment
 C(8000) TYPE C, "Table content
 END OF BUFFER.

FIELD-SYMBOLS: <WA> TYPE ANY,

 <COMP> TYPE ANY.

* Set field symbol with appropriate type
* to buffer area

 ASSIGN BUFFER TO <WA> CASTING TYPE (TAB_NAME).

SELECT * FROM (TAB_NAME) INTO <WA>
 UP TO number of ROWS.

 ASSIGN COMPONENT TAB_COMP OF STRUCTURE <WA> TO <COMP>.
 WRITE: / TAB_COMP, <COMP>.
ENDSELECT.

Until now, in the ASSIGN field TO <f> CASTING... statement, the system
checked to ensure that field was at least as long as the type that was assigned to
the field symbol, <f>. (Field symbols can either be typed at declaration or the
type specified in an ASSIGN statement using CASTING TYPE). The syntax check is
now more thorough. Now, you can only assign the field field provided it is at
least as long – in both the UP and the NUP – as the type assigned to the field
symbol <f>. Otherwise, the system returns a syntax error. At runtime, the system
only checks to see whether or not the lengths are compatible in the current
system (as before).

If the field type or field symbol type is a deep structure, the system also checks
that the offset and type of all the reference components match in the area of
field that is covered by <f>. The syntax check is now more thorough. Now, the
system checks that these components must be compatible in all systems,
whether they have a one-byte, double-byte, or four-byte character length. At
runtime, the system only checks to see whether or not the reference
components are compatible in the current system.

In US, in the ASSIGN str TO <f> TYPE C/N and ASSIGN str TO <fs>
CASTING TYPE C/N statements, the length of str may not always be a multiple
of the character length, in which case the program aborts at runtime.

 26

5.4 Includes with Group Names

By redefining structures using INCLUDES with group names, you can select groups of
fields symbolically beyond the boundaries of individual components. You can assign
group names either in the ABAP Dictionary or in an ABAP program. The statement
takes one of the following two forms:
INCLUDE TYPE t1 AS grpname[RENAMING WITH SUFFIX suffix].
INCLUDE STRUCTURE s1 AS grpname[RENAMING WITH SUFFIX suffix].

By adding a group name in an Include (in the ABAP Dictionary) or with the AS
grpname addition in an ABAP program, you can then address the area of the
structure defined in the Include symbolically (using the group name). The following
example groups together parts of an ABAP structure, which is then passed to a
subprogram:

* Using Includes with Group Names
TYPES: BEGIN OF name,
 first name(20) TYPE C,
 surname(30) TYPE C,
 END OF name.

TYPES: BEGIN OF person,
 sex(1) TYPE X.
 INCLUDE TYPE name AS pname.
TYPES: alter TYPE I,
 weight TYPE P,
 END OF person.
DATA: s2 TYPE person.

PERFORM use_name USING s2-pname.

5.5 Creating Data Objects Dynamically

�� CREATE DATA allows you to create fields in a pre-defined or user-defined data

type. The statement has the following variants:

CREATE DATA dref TYPE typ.

CREATE DATA dref TYPE (typname).

CREATE DATA dref LIKE feld.

CREATE DATA dref TYPE LINE OF itab.

CREATE DATA dref LIKE LINE OF itab.

In the following example, a specific field is read from database table X031L.
Note that neither the field name nor the table name is known until runtime:

 27

* Read a field from the table X031L

 PARAMETERS:
 TAB_NAME LIKE SY-TNAME, "Table name
 TAB_COMP LIKE X031L-FIELDNAME, "Field name
 NUMBER TYPE I DEFAULT 10. "Number of lines
 FIELD-SYMBOLS: <WA> TYPE ANY,
 <COMP> TYPE ANY.
 DATA: WA_REF TYPE REF TO DATA.

 CREATE DATA WA_REF TYPE (TAB_NAME). "Suitable work area
 ASSIGN WA_REF->* TO <WA>.
 SELECT * FROM (TAB_NAME) INTO <WA>
 UP TO NUMBER ROWS.
 ASSIGN COMPONENT TAB_COMP OF STRUCTURE <WA> TO <COMP>.
 WRITE: / TAB_COMP, <COMP>.
 ENDSELECT.

�� Another variant of CREATE DATA allows you to create table objects at runtime.
The line type and table key can be entered statically or dynamically.

CREATE DATA dref (TYPE [STANDARD|SORTED|HASHED] TABLE

 OF (LineType | (Name) |REF TO DATA | REF TO Obj))
 | (LIKE [STANDARD|SORTED|HASHED] TABLE OF LineObj)

[WITH (UNIQUE|NON-UNIQUE)
(KEY (k1 ... kn | (keytab) | TABLE_LINE)
| DEFAULT KEY)]

 [INITIAL SIZE m]

The following constraints apply to this variant:

1. m is a variable or a constant without a sign, whose content at runtime must
be of the type NUMLIKE.

2. keytab is a table of the type CHARLIKE, which must not be empty, and whose
components must not contain any offset, length, or overlapping key entries.
You can use the TABLE_LINE addition, if the table contains only one line.

3. The system returns a syntax error if either the type, or line declaration and
the key declaration are static.

4. If you do not define a key, the system uses the DEFAULT-KEY.

�� You can also use the basic generic types, C, N, X, and P with the CREATE DATA

statement. You can specify the length and number of decimal places (for type
P) using additions.

CREATE DATA dref TYPE (t | (typeName))

[LENGTH len]
[DECIMALS dec].

You can only use the LENGTH addition for types C, N, X, and P and you must
always include it after the TYPE keyword. A catchable runtime error occurs if

 28

you do not comply with syntax conventions when entering LENGTH or DECIMALS
values.

5.6 Assigning Fields Dynamically
In previous releases in the MOVE-CORRESPONDING struc1 TO struc2 statement, the
field types of both structures had to be known at the time they generated. This
constraint no longer applies under Unicode.
In an NUS until now, there was no problem assigning structures with different
Unicode fragment views using a MOVE statement. In a US, such assignments will
cause a runtime error, even if both structures start with the same types:

BEGIN OF struc1, BEGIN OF struc2,
 a(2) TYPE C, a(2) TYPE C,
 b TYPE I, b TYPE I,
 c(1) TYPE C, c(1) TYPE C,
 d(4) TYPE X, g(6) TYPE P,
END OF struc1. f(2) TYPE X,
 END OF struc2.

struc1 a b c d

struc2 a b c g f

For example, the content of struc2-[a,c] (which starts with fields of the same type)
is assigned to struc1. Until now, you could use a simple MOVE statement (although
this could mean that the remainder of struc1 subsequently did not contain
meaningful values). However, in Unicode, you must the MOVE-CORRESPONDING
struc2 TO struc1; otherwise, a runtime error occurs (because you are
attempting to MOVE struc2 to a structure with a different fragment view). You
obtain the same result in Unicode, if the field names of the start of both structures
are identical at runtime.

5.7 Storing Data as a Cluster

New variants of the IMPORT and EXPORT statements are available to support
heterogeneous Unicode environments. They allow you to store data as a cluster in
an XSTRING in a cross-platform format You can use the following variants:

�� EXPORT {pi = dobji | pi FROM dobji } TO DATA BUFFER dbuf.
EXPORT (itab) TO DATA BUFFER dbuf.
Stores the objects dobj1 ... dobjn (fields, flat structures, complex structures, or
tables) as a cluster in the data buffer, dbuf, which must be of type XSTRING.

TYPES:
 BEGIN OF ITAB_TYPE,
 CONT TYPE C LENGTH 4,
 END OF ITAB_TYPE.

 29

 DATA:
 XSTR TYPE XSTRING,
 F1 TYPE C LENGTH 4,
 F2 TYPE P,
 ITAB TYPE STANDARD TABLE OF ITAB_TYPE.

 EXPORT P1 = F1
 P2 = F2
 TAB = ITAB TO DATA BUFFER XSTR.

�� New addition: ... CODE PAGE HINT f1
You use this addition in conjunction with ambiguous code pages in the EXPORT
obj1 ... objn TO [DATA BUFFER | DATABASE | DATASET]
statement. It specifies the code page, f1, which is to be used to interpret the
import data.

�� IMPORT {pi = dobji | pi FROM dobji } FROM DATA BUFFER dbuf.
IMPORT (itab) FROM DATA BUFFER dbuf.

Imports the data objects dobj1 ... dobjn (fields, flat structures, complex
structures, or tables) from a data cluster in the data buffer entered, dbuf,
which must be of type XSTRING. The system reads all the data that was
previously stored in the data buffer dbuf using the EXPORT ... TO DATA BUFFER
statement. Again, the system does not check that the structures in the EXPORT
and IMPORT statements match.

If the data objects are specified dynamically, the parameter list in the two-
column index table, itab, is passed. The columns in this table must be of type C
or STRING. The first column of itab contains the name of each parameter, while
the second lists the data objects. If the first column of itab is empty, an
exception that cannot be handled occurs, with the runtime error
DYN_IMEX_OBJ_NAME_EMPTY.

5.8 File Interface

In the file interface, the OPEN DATASET statement has been completely overhauled
and the following enhancements added for USs:

�� OPEN DATASET dsn IN TEXT MODE.

The file is opened so that it can be read or written to line-by-line. Final space
characters are deleted in this mode.

1. Addition: ENCODING (DEFAULT | UTF-8 | NON-UNICODE)
The keyword ENCODING specifies the character set used to edit the data. In a
US the DEFAULT is UTF-8, while in an NUS it is NON-UNICODE. If you specify
NON-UNICODE, the system uses the non-Unicode codepage that suits the logon
language or the language set using SET LOCALE LANGUAGE in a non-Unicode
system.

 30

2. Addition ... REPLACEMENT CHARACTER rc
Specifies the replacement character that is used if a character is not available
in the target character set when the file is converted. The default replacement
character is the hash symbol (#).

�� OPEN DATASET dsn IN BINARY MODE.
The file is opened to be read or written to, without any line breaks. In both the
US and the NUS, the exact content of memory is copied.

�� OPEN DATASET dsn IN LEGACY TEXT MODE [(LITTLE | BIG) ENDIAN]
 [CODE PAGE cp].

The file is opened so that it can be read or written to line-by-line, in a format
compatible with TEXT MODE in the NUS.
You use the ENDIAN addition to specify the byte order that the system will use
to process numbers of type I or type F. If you omit this addition, the operating
system of the application server specifies the byte order. If the byte order
declared differs from that used by the operating system, the data is converted
as appropriate for the statements READ DATASET and TRANSFER. You can also
specify a REPLACEMENT CHARACTER, rc, in this statement.
The CODE PAGE addition specifies the code page used to display text from the
file dsn. If this addition is missing, the system uses the code page used to read
or write to the file.

�� OPEN DATASET dsn IN LEGACY BINARY MODE [(LITTLE|BIG) ENDIAN)]
 [CODE PAGE cp].

The file is opened to be read or written to without any line breaks, in a format
compatible with NUS BINARY MODE. The additions ENDIAN and CODE PAGE are
used as described above. You can also specify a REPLACEMENT CHARACTER rc in
this statement.

For each of the above variants, you can use the IGNORING CONVERSION ERRORS
addition to make the system suppress conversion errors at runtime when reading or
writing to a file. In general, reading or writing to a file causes a runtime error,
unless this file has already been opened using an OPEN DATASET statement.

5.9 Uploading and Downloading Files

WS_UPLOAD and WS_DOWNLOAD, the function modules used until now are not
part of the standard set of ABAP commands. They are used to display the file
interface on the presentation server. WS_UPLOAD and WS_DOWNLOAD are not
compatible with USs and have been replaced by GUI_UPLOAD and
GUI_DOWNLOAD.
The new function modules, GUI_UPLOAD and GUI_DOWNLOAD, have an interface
that also allows you to write Unicode format to the local hard drive. For a
description of these interfaces, refer to the documentation for each function
module, available under SAP Easy Access -> Development -> Function Builder ->
Goto -> Documentation.

 31

5.10 Generic Types for Field Symbols and Parameters
The following new generic data types are now available for assigning types to
parameters and field symbols:

�� SIMPLE is compatible with all the types that are compatible with CLIKE,
XSEQUENCE, or NUMERIC – that is, with all elementary types including STRING
and XSTRING. Assigning the generic type SIMPLE ensures that parameters or field
symbols can be displayed using WRITE or used in arithmetic operations.
However, conversion errors may occur when parameters and field symbols of this
type are used in arithmetic operations, depending on the content – for example,
a C field is passed as an actual parameter and the field content cannot be
interpreted as a number.

�� CLIKE is compatible with the types C, N, D, T, STRING, and purely character-
type structures. In NUSs, CLIKE is also compatible with the elementary types X
and XSTRING. Assigning the generic type CLIKE ensures that parameters and field
symbols can be used for all operations string processing operations, such as
those in the CONCATENATE, FIND, and REPLACE statements. You also guarantee
that the system counts in characters when performing offset-based or length-
based accesses. These are allowed in the range of the entire field, or within the
current string length for STRING-type components.

�� CSEQUENCE is compatible with the types C and STRING

�� XSEQUENCE is compatible with the types X and XSTRING. Assigning this generic
type guarantees that parameters and field symbols can be used in byte
processing operations, such as in the CONCATENATE ... IN BYTE MODE
statement.

�� NUMERIC is compatible with the types I, P, and F. It is also compatible with two
types that are only available in the Dictionary - INT1 (single-byte integer) and
INT2 (double-byte integer). Note that type N is not compatible with the generic
type NUMERIC. Assigning the generic type NUMERIC ensures that parameters and
field symbols can be used in arithmetic operations without type or conversion
errors occurring.

5.11 Formatting Lists

�� Introduction

The WRITE statement writes the content of data objects into a list. When using
the WRITE statement during the write process, the output is saved in the list
buffer and displayed from there when calling the list. When using WRITE to
output a data object, an output length is determined implicitly or explicitly, and
the implicit output length depends on the data type. The output length defines:
�� The number of spaces (or the memory space) available for characters in the

list buffer.
�� The number of columns (or cells) available in the actual list.

 32

If the output length is shorter than the length of the data object, its content is
truncated according to specific rules when writing the data into the list buffer;
the value loss for numeric fields is indicated by the * character. When displaying
or printing a list, the contents stored in the list buffer are transferred to the list
as follows:

�� In NUS, each character requires exactly as much space in the list buffer as it
does columns in the list. In single-byte systems, a character occupies one byte
in the list buffer and one column in the list, while a character in multi byte
systems that occupies multiple bytes in the list buffer occupies the same
number of columns in the list. Therefore, in NUS, all characters stored in the
list buffer are displayed in the list.

�� In US, each character generally occupies one space in the list buffer.
However, a character can occupy more than one column in the list – this
applies especially to East Asian characters. Since the list has only the same
number of columns available as there are spaces in the list buffer, in this
case, the number of characters that can be displayed in the list is lower than
the number of the ones stored in the list buffer. The list output is truncated
accordingly, the page is justified, and the indicator > or < is inserted. The
complete content can be displayed in a list by choosing System� List �
Unicode Display.

These are the reasons why the horizontal position of the list cursor is equal to
the output column of a displayed or printed list in NUS only. In US, this is
guaranteed only for the minimum and maximum output limits of the individual
outputs.

�� Rules for the WRITE Statement
To avoid inadvertent truncation, the rules for the WRITE statement were
adjusted and extended in UP.

1. WRITE Statement with Implicit Output Length

In UP, the WRITE statement without an explicit specification of the output
length has the same behavior as in NUP for all data objects to be output with the
exception of text field literals and the data objects of the type string.
Therefore, the number of displayed characters in the list may be lower than the
number of characters stored in the list buffer.

In the case of text field literals and data objects of the type string, it is assumed
that all characters are to be displayed. Therefore, the characters contained in
the data object are used to calculate the implicit output length in such a way
that it equals the number of columns required for the list. If this output length is
longer than the data object length, the superfluous spaces are filled with blank
characters when writing the data into the list buffer. When the characters are
displayed in the list, these blank characters are truncated because the display of
the characters fits the output length exactly.

 33

2. WRITE Statement with Implicit Output Length

When the WRITE statement has a numeric data object specified as an explicit
output length after the AT addition, the value of this number is used as the
output length in US and NUS. In US, the number of characters displayed in the
list can differ from the number of characters stored in the list buffer. As of
Release 6.20, the output length can be specified - besides using numeric data
objects – in the following way:
1. WRITE AT (*) ...

�� For data objects of the types c and string, the output length is set to the
number of columns that is required for the list to display the complete
content; closing blank characters for the type c are ignored. For data
objects of the string type, this setting is the same as the implicit length.

�� For data objects of the types d and t, the output length is set to 10 and 8.

�� For data objects of the numeric types i, f, and p, the output length is set
to the value that is required to output the current value including the
thousand separator; the value depends on the possible use of the
additions CURRENCY, DECIMALS, NO-SIGN, ROUND, or UNIT.

�� For data objects of the types n, x, and xstring, the implicit output length
is used.

2. WRITE AT (**) ...

�� For data objects of the type c, the output length is set to double the
length of the data object, and for data objects of the type string, the
output length is set to double the number of the contained characters.

�� For data objects of the types d and t, the output length is set to 10 and 8.

�� For data objects of the numeric types i, f, and p, the output length is set
to the value that is required to output the maximum number of values of
this type including the thousand separator; the value depends on the
possible additions CURRENCY, DECIMALS, NO-SIGN, ROUND, or UNIT.

�� For data objects of the types n, x, and xstring, the implicit output length
is used.

�� New Additions for GET/SET CURSOR FIELD/LINE

The additions DISPLAY OFFSET and MEMORY OFFSET take into account that data
objects may require different lengths when displayed in a list (display) or when
stored in the list buffer (memory) during the intermediate storage. In Unicode
pages, there are, for example, characters that take up one space in the list
buffer but require two output columns when displayed.

Accordingly, for the SET CURSOR { FIELD f | LINE l } statement, using the
DISPLAY OFFSET addition sets the cursor in the output while using MEMORY
OFFSET off sets it in the list buffer.

Similarly, using the GET CURSOR { FIELD f | LINE l } statement with the DISPLAY
OFFSET off addition transfers the cursor position within the displayed field into
the data object off. On the other hand, when using the MEMORY OFFSET off

 34

addition, the cursor position in the list buffer is transferred into the data object
off. The DISPLAY addition is the default setting and can therefore be omitted.

�� Class for Formatting Lists

The class CL_ABAP_LIST_UTILITIES was introduced for calculating output lengths,
converting values from the list buffer, and defining field limits. Using the return
values of its methods, the column alignment on ABAP lists can be programmed,
even if they contain East Asian characters.

�� List Settings

The list objects can be displayed in different output lengths by choosing System
� List � Unicode Display and setting the desired length. This is especially
advantageous for screen lists in US whose outputs were truncated – this is
indicated by the indicator > or <.

�� Recommendations

To ensure that lists have the same appearance and functions in US and NUS, it is
recommended that you adhere to the following rules when programming lists:
�� Specify a sufficient output length
�� Do not overwrite parts of a field
�� Do not use WRITE TO with RIGHT-JUSTIFIED or CENTERED with a subsequent

WRITE output
�� For self-programmed horizontal scrolling using the SCROLL statement, only

the minimum or maximum limit of the data objects that are output should
be specified, because in US, it is guaranteed for these limits only that the
positions in the list buffer and the displayed list match

6. New Classes for Unicode

6.1 Determining Field Properties
The class CL_ABAP_CHAR_UTILITIES provides attributes and methods that affect
the properties of single characters. The components of this class are all static and
public. The attributes are write-protected and are initialized in the class
constructor method.

�� CHARSIZE attribute

CHARSIZE TYPE I.

The CHARSIZE attribute declares the length of a C(1) field in bytes – that is, one
byte in an NUS, and either two or four bytes in a US.

�� MINCHAR, MAXCHAR attributes

MINCHAR(1) TYPE C.

In an NUS, MINCHAR contains the Unicode character X’00’. In a US, it contains
the Unicode character U+0000.

MAXCHAR(1) TYPE C.

 35

In an NUS, MAXCHAR contains the Unicode character X’FF’. In a US, it contains
the Unicode character U+FFFD.

You can use these values only when performing binary comparisons in the
following ABAP statements:
1. SORT without the AS TEXT addition
2. IF with the <, >, <=, and >= operators
3. IF f1 BETWEEN f2 AND f3.
4. IF f in sel.

Bear in mind that the results of binary comparisons are platform-specific. For
example, the character sequence in the ISO-8859-1 character set is 1 < A < Z < a
< Ä < ü, whereas in EBCDIC it is Ä < a < A < ü < Z < 1.

You can use CLEAR feld WITH CL_ABAP_CHAR_UTILITIES=>MAXCHAR to fill a
field with a value that is greater than or equal to all the strings. This also works
in a multi-byte NUS.

MINCHAR and MAXCHAR are not usually valid characters in the current character
set. In particular, you cannot use TRANSLATE f TO UPPER CASE in conjunction
with these attributes, since the result would be undefined. The same constraint
applies to all operations that implicitly convert characters to upper case – such
as CS, NS, CP, NP or SEARCH. Moreover, you cannot perform character set
conversions with the MINCHAR or MAXCHAR attribute.

In addition, MINCHAR may not always be displayed on screens as the number
sign (#). In many cases, it is treated as the end of a text field.

�� Byte order
Conversion classes, implemented with the file interface, are used to convert
numeric data types and Unicode from little-endian to big-endian format and
vice versa. The attributes described in this section are used to recognize and
set byte order marks in X containers.

ENDIAN attribute

ENDIAN(1) TYPE C.

The value B indicates big-endian format, while L denotes little-endian, in either
a US or an NUS (as in the class-based file interface).

Constants BYTE_ORDER_MARK_

BYTE_ORDER_MARK_LITTLE(2) TYPE X
BYTE_ORDER_MARK_BIG(2) TYPE X
BYTE_ORDER_MARK_UTF8(3) TYPE X

The values for these constants are X’FFFE’ for little-endian and X’FEFF’ for big-
endian, in both Unicode and NUSs. BYTE_ORDER_MARK_UTF8 contains the UTF8
display of U+'FEFF'.

The class-based file interface writes a byte order mark whenever a UTF16 or
UCS2 text is opened to be written to. When a text file is opened to be read or
appended, a byte order mark is used to specify the endian format. However,
the byte order mark is not written to the target fields when the file is read.

 36

�� NEWLINE, CR_LF, and HORIZONTAL_TAB attributes
NEWLINE(1) TYPE C
CR_LF(2) TYPE C
HORIZONTAL_TAB(1) TYPE C

These attributes contain the appropriate platform-specific control characters.

6.2 Converting Data

These classes are used to convert ABAP data from the system format to external
formats and vice versa. During this conversion process, character-type data may be
converted to another character set, while numeric-type data may be converted to
another byte order (or endian format). You must use a container of type X or
XSTRING for data in an external format.

Character sets and endian formats are also converted by the file interface (OPEN
DATASET with new additions), RFCs, and the function modules GUI_DOWNLOAD and
GUI_UPLOAD. The classes described below are available for those special cases
where the possibilities offered by conversion are insufficient. Since these classes
work with containers of types X and XSTRING, these containers can be copied
unconverted by the file interface (OPEN DATASET with new additions), RFCs, and
the function modules GUI_DOWNLOAD and GUI_UPLOAD. These classes replace the
following two statements:

TRANSLATE c ...FROM CODE PAGE g1 ... TO CODE PAGE g2
TRANSLATE f ...FROM NUMBER FORMAT n1 ... TO NUMBER FORMAT n2

For a detailed description, see the class documentation in the Class Builder. The
following classes are available:

CL_ABAP_CONV_IN_CE:
Reads data from a container and converts it to the system format. You can also fill
structures with data.

CL_ABAP_CONV_OUT_CE:
Converts data from the system format to an external format and writes it to a
container.

CL_ABAP_CONV_X2X_CE:
Converts data from one external format to another.

7. RFC and Unicode

The Remote Function Call (RFC) interface has also changed as part of the
conversion to Unicode. The following remarks give a very brief outline of the
general guidelines.

So that the RFC works in both USs and NUSs, an additional attribute has been added
to the destination. This attribute specifies whether the RFC is to run in a US or a

 37

NUS. If an ABAP program uses function modules that change the RFC destination,
this new attribute must be filled using another required parameter.

When text data is transferred in an RFC, the following new exceptions may occur:
�� A text cannot be converted from the source code page to the target code page

because the corresponding character in the target code page is not available.
�� The field in the target system is shorter than the field in the source system.

This may occur if data from a US is transferred to a multibyte system.
�� In principle, you can assume that text data has a different length in the sending

system than in the receiving system. For this reason, we recommend that you
use strings wherever possible. That is, you should try to avoid specifying the
length of text data. You can, however, send binary data whose length is
specified, without any problems.

8. Further Measures

Until now, when the system checked or converted data types, the class hierarchy
and interface implementation relation were only taken into account in the case of
single fields with class and interface references. Structures containing references
were not checked consistently. For this reason, when deep structures are being
converted or when type and comparison checks are being performed on them, the
following generalizations are made:

1. Convertibility and type compatibility for Importing parameters:

�� Elementary components of structures must match exactly.

�� The class hierarchy and interface implementation relation are also taken
into account in the case of interface and class references used as sub-
components.

�� Table components are mutually compatible if the line type is type-
compatible and convertible. That means that tables can have different
access types. The line types must be convertible – for example, the
structure component Table over Integer is compatible with the component
Table over Float.

2. Comparability:

�� Elementary components must match exactly.

�� Comparability can be performed on all classes and interface reference
components.

�� Table components are comparable if their line type is comparable.

 38

9. Other Sample Programs for the Conversion to Unicode

9.1 Assignment Between Structures: Conversion Using Includes with
Group Names

Before the conversion to Unicode

types: begin of T_STRUC,
 F1 type c,
 F2 type c,
 F3 type i,
 F4 type p,
 end of T_STRUC.

data: begin of STRUC1.
 include type T_STRUC.
data: F5 type x.
data: end of STRUC1.

data: begin of STRUC2.
 include type T_STRUC.
data: F6 type p.
data: end of STRUC2.

STRUC1 = STRUC2. � Unicode error

In this case, it is assumed that only the content of the includes is to be assigned –
that is the components F1 to F4. Until now, it was tolerated that the component F5
is overwritten with a meaningless value.

After the conversion to Unicode

By introducing group names for the includes, this code segment can be converted
easily when assigning structures.

types: begin of T_STRUC,
 F1 type c,
 F2 type c,
 F3 type i,
 F4 type p,
 end of T_STRUC.

data: begin of STRUC1.
 include type T_STRUC as PART1.
data: F5 type x.
data: end of STRUC1.

data: begin of STRUC2.
 include type T_STRUC as PART1.
data: F6 type p.
data: end of STRUC2.

 39

STRUC1-PART1 = STRUC2-PART1. � ok

9.2 Assignment Between Structures: Conversion Using Offset-Based or
Length-Based Accesses

Before the conversion to Unicode

data: begin of STRUC1,
 F1(10) type c,
 F2(20) type c,
 F3 type i,
 F4 type p,
 end of STRUC1,

 begin of STRUC2,
 C1(10) type c,
 C2(20) type c,
 C3 type x,
 C4 type f,
 end of STRUC2.

STRUC1 = STRUC2. � Unicode error

In this example, it is assumed that only the content of the first two components C1
and C2 is to be passed to F1 and F2, because the following components F3 and F4
are overwritten by meaningless values.

After the conversion to Unicode

Since the initial part of the structures relevant for the assignment is purely
character-type, the operands of the assignment can be selected using offset-based
or length-based accesses:

 ...
 STRUC1(30) = STRUC2(30). � ok

9.3 Offset-Based or Length-Based Access to Structures for Assignment:
Use of Includes

Before the conversion to Unicode

When using offset-based or length-based accesses, areas of structures that are to
be assigned to each other are selected. Since the structures do not start with
character-type components, the offset-based or length-based accesses in Unicode-
enabled programs are no longer allowed.

 40

data: begin of STRUC1,
 F0 type x,
 F1(10) type c,
 F2(20) type c,
 F3 type i,
 F4 type p,
 end of STRUC1,

 begin of STRUC2,
 C0 type i,
 C1(10) type c,
 C2(20) type c,
 C3 type x,
 C4 type f,
 end of STRUC2.

STRUC1+1(30) = STRUC2+4(30). � Unicode error

After the conversion to Unicode

By introducing includes with group names, the appropriate areas of the structures
can be selected and assigned to each other.

types: begin of PART1,
 F1(10) type c,
 F2(20) type c,
 end of PART1,

 begin of PART 2,
 C1(10) type c,
 C2(20) type c,
 end of PART 2.

data: begin of STRUC1,
 F0 type x.
 include type PART1 as PART.
data: f3 type i,
 f4 type p,
 end of STRUC1,

 begin of STRUC2,
 C0 type i.
 include type PART2 as PART.
data: C3 type x,
 C4 type f,
 end of STRUC2.

STRUC1-PART = STRUC2-PART. � ok

 41

9.4 Offset-Based or Length-Based Access to Structures for Assignment:
No Solution with Includes

Before the conversion to Unicode

data: begin of STRUC1,
 F0(1) type x,
 F1(10) type c,
 F2(20) type c,
 F3 type i,
 F4 type p,
 end of STRUC1,

 begin of STRUC2,
 C0(1) type c,
 C1(10) type c,
 C2(20) type c,
 C3 type i,
 C4 type f,
 end of STRUC2,

 begin of STRUC3,
 G0(1) type c,
 G1(10) type c,
 G2(20) type c,
 end of STRUC3.
STRUC1+1(35) = STRUC2+1(35). � Unicode error
STRUC3 = STRUC2.

Conversion attempt: Introduction of INCLUDEs with group names

types: begin of PART1,
 F1(10) type c,
 F2(20) type c,
 F3 type i,
 end of PART1,

 begin of PART2,
 C1(10) type c,
 C2(20) type c,
 C3 type i,
 end of PART2.

data: begin of STRUC1,
 F0(1) type x.
 include type PART1 as PART.
data: F4 type p,
 end of struc1.

data: begin of STRUC2,
 C0(1) type c.

 42

 include type PART2 as PART.
data: C4 type f,
 end of STRUC2,

 begin of STRUC3,
 G0(1) type c,
 G1(10) type c,
 G2(20) type c,
 end of STRUC3.

STRUC1-PART = STRUC2-PART.
STRUC3 = STRUC2. � New Unicode error

By introducing the includes, the problematic code segment can be converted to a
Unicode-enabled code. However, the subsequent assignment causes a new Unicode
problem: The assignment of STRUC2 to STRUC3 is no longer possible because in
STRUC2 the include causes an alignment gap before the component C1. Due to this
gap, the Unicode fragment views of STRUC2 and STRUC3 no longer match.

After the conversion

The only way of solving this problem is to assign the components of the structures
to each other individually:

data: begin of STRUC1,
 F0(1) type x,
 F1(10) type c,
 F2(20) type c,
 F3 type i,
 F4 type p,
 end of STRUC1,

 begin of STRUC2,
 C0(1) type c,
 C1(10) type c,
 C2(20) type c,
 C3 type i,
 C4 type f,
 end of STRUC2,

 begin of STRUC3,
 G0(1) type c,
 G1(10) type c,
 G2(20) type c,
 end of STRUC3.

STRUC1-F1 = STRUC2-C1.
STRUC1-F2 = STRUC2-C2.
STRUC1-F3 = STRUC2-C3.

STRUC3 = STRUC2.

 43

9.5 Assignment Between Structure and Single Field of Type N

Assignments between a non-character-type structure and a single field of type N
are no longer allowed in Unicode programs.

Before the conversion to Unicode

data: begin of STRUC,
 NUMBER(20) type n,
 F2 type p,
 end of STRUC,

 NUMBER(20) type n.

NUMBER = STRUC. � Unicode error

After the conversion to Unicode

Since the first component of the structure is to be assigned to the single field, the
code segment can be converted easily by replacing the assignment of the whole
structure with an assignment of the first structure component.

...
NUMBER = STRUC-NUMBER.

9.6 Assignment Between Structure and Single Field of Type D

Before the conversion to Unicode

data: begin of STRUC,
 YEAR(4) type n,
 MONTH(2) type n,
 DAY(2) type n,
 F4 type p,
 end of STRUC,

 DATE type d.

DATE = STRUC. � Unicode error

Assignments between a non-character-type structure and a single field of type D
are no longer allowed in Unicode programs.

After the conversion to Unicode

An offset-based or length-based access to the character-type initial part of the
structure enables you to convert the problematic code segment to a Unicode-
enabled code.

DATE = STRUC(8). � ok!

 44

9.7 Assignment Between Structure and Single Field: ASCII Codes

Previously, assignments between structures with components of type X and single
fields were also used to calculate characters for an ASCII code, as shown in the
following example.

Before the conversion to Unicode

data: begin of TAB,
 X(1) type x value '09', “ASCII horizontal tab
 end of TAB,

 C(10) type c.

C+5(1) = TAB. � Unicode error

This does not work in Unicode programs. Now, the new predefined constants in the
CL_ABAP_CHAR_UTILITIES class provide a simple and efficient solution for all
platforms.

After the conversion to Unicode

class cl_abap_char_utilities definition load.
c+5(1) = cl_abap_char_utilities=>horizontal_tab.

Note: If the character in use is not predefined as a constant, you can get the
appropriate character for a Unicode code point by using the
CL_ABAP_CONV_IN_CE=>UCCP or CL_ABAP_CONV_IN_CE=>UCCPI) method. You can
take advantage of the fact that the characters with ASCII codes 00 to 7F) are
equivalent to the first 127 Unicode codepoints which are U+0000 to U+007F.

9.8 Assignment Between Structure and Single Field: Container Fields
(1)

Long fields of type C were often used as containers, in which data of different
structures was stored. The assignment between structure and single field could be
used directly for storing and reading the data. In Unicode programs, these
assignments are only allowed if the structure is purely character-type.

Before the conversion to Unicode

data: begin of STRUC,
 F1(3) type x,
 F2(8) type p,
 end of STRUC,

 CONTAINER(1000) type c.

“Store data in container

 45

CONTAINER = STRUC. � Unicode error

”read data from container
STRUC = CONTAINER. � Unicode error

Now, C fields can only be used as containers for storing non-purely character-type
structures if the content is only used temporarily within an application server.
Therefore the content of the container field cannot be stored in the database, sent
by RFC, or written to a file1. It is also not possible to access the container field for
the selection of structure components by using offset or length2.

If these prerequisites are met, the writing and reading of data can be converted by
using casts to set field symbols of the type X to the container field and the
structure, and then implementing the assignment between the field symbols. Due
to the assignment, the remaining content of the container is filled with Hex 00
values instead of blank characters. This should not cause any problems if the C
field is only used for data storage.

After the conversion to Unicode

field-symbols: <X_CONTAINER> type x,
 <X_STRUC> type x.

assign CONTAINER to <X_CONTAINER> casting.
assign STRUC to <X_STRUC> casting.

“Store data in container
<X_CONTAINER> = <X_STRUC>. � ok!

”Read data from container
<X_STRUC> = <X_CONTAINER>. � ok!

Note: The class CL_ABAP_CONTAINER_UTILITIES offers generic solutions to store
structures in containers of type C or STRING. However, when using these classes,
the class wrapping and the generic solution can have a negative effect on the
performance.

1 When reading from the database, writing to it, or using RFC, bytes of the
character field might be swapped automatically – depending on the byte order
(little endian/big endian) of the application server hardware. If non-character-type
data is stored in the character field, this automatic swapping causes a truncation of
the content.
2 An access with offset or length is no longer useful, since the offset and length
values might be different on non-Unicode and Unicode platforms. In addition,
accesses to C fields are always counted in characters. In the structures, however,
components might appear that have odd lengths or offsets on Unicode systems.

 46

...
class CL_ABAP_CONTAINER_UTILITIES definition load.

call method CL_ABAP_CONTAINER_UTILITIES =>FILL_CONTAINER_C
 exporting IM_VALUE = STRUC
 importing EX_CONTAINER = CONTAINER
 exceptions ILLEGAL_PARAMETER_TYPE = 1
 others = 2.

call method CL_ABAP_CONTAINER_UTILITIES =>READ_CONTAINER_C
 exporting IM_CONTAINER = CONTAINER
 importing EX_VALUE = STRUC
 exceptions ILLEGAL_PARAMETER_TYPE = 1
 others = 2.

9.9 Assignment Between Structure and Single Field; Container Fields
(2)

If the total length of the structures stored in the C container is always a multiple of
the length of one character – this is the case when the structure contains at least
one component of the type C, N, D, T, I, or F – you can use the following solution,
which is simpler and only needs one field symbol.

Before the conversion to Unicode

data: begin of STRUC,
 F1(3) type x,
 F2(8) type p,
 F3(10) type c
 end of STRUC,

 CONTAINER(1000) type c.

* Store data in container
CONTAINER = STRUC. � Unicode error

* Read data from container
STRUC = CONTAINER. � Unicode error

After the conversion to Unicode

field-symbols: <C_STRUC> type c.

assign STRUC to <C_STRUC> casting.

* Store data in container
CONTAINER = <C_STRUC>. � ok
* Read data from container
<C_STRUC> = CONTAINER. � ok

 47

9.10 Assignment Between Structure and Single Field: Non-Local
Container

In the following example, a table is filled in which each line contains the name of a
Dictionary structure and the content of such a structure stored in a container field.
Elsewhere in the program the table is further processed: The values of the
structure components are output by means of a function module that determines
the offsets and lengths of the structure components, and then the components are
selected using offset-based or length-based accesses to the container.

Before the conversion to Unicode

types: begin of T_VALUE_WA,
 TABNAME(30) type c,
 DUMMY_ALIGN type f,
 CONTAINER(1000) type c,
 end of T_VALUE_WA,
 T_VALUE_LIST type table of T_VALUE_WA.

data: L_VALUES type T_VALUE_LIST,
 L_VALUE_WA type T_VALUE_WA,
 L_D010SINF type D010SINF,
 L_CO2MAP type CO2MAP.

* Storage of different structures in a table:
L_VALUE_WA-TABNAME = 'D010SINF'.
L_D010SINF-DATALG = 41.
L_VALUE_WA-CONTAINER = L_D010SINF. � Unicode error
append L_VALUE_WA to L_VALUES.

L_VALUE_WA-TABNAME = 'CO2MAP'.
L_CO2MAP-ID = 42.
L_VALUE_WA-CONTAINER = L_CO2MAP. � Unicode error
append L_VALUE_WA to L_VALUES.

* Processing of table L_VALUES elsewhere in the
* Program: Generic output of the structure components.

data: L_DFIES_TAB type table of DFIES.

field-symbols: <DT> type DFIES,
 <VALUE_WA> type T_VALUE_WA,
 <f>.

clear L_VALUES_WA.
loop at L_VALUES assigning <VALUE_WA>.

* Determine components with offset and length
 call function 'DDIF_NAMETAB_GET'
 exporting

 48

 tabname = <VALUE_WA>-TABNAME
 tables
 DFIES_TAB = L_DFIES_TAB.

* Output of content of components
 loop at L_DFIES_TAB assigning <DT>.
 assign <VALUE_WA>-CONTAINER+<DT>-OFFSET(<DT>-INTLEN)

 to <F> type <DT>-INTTYPE.
 write <F>.
 endloop.
endloop.

The offset-based or length-based accesses do not cause a syntax or runtime error,
but provide incorrect data in a Unicode system, because the function module
returns the offset and length values in bytes whereas these values are counted in
characters when accessing the C container.

As of Release 4.6 the solutions of creating data objects dynamically simplify the
conversion to Unicode and make the program significantly more user-friendly.
In the following example, an X string is used as container for the content of the
structures that is filled by using EXPORT ... TO DATA BUFFER… and read by using
IMPORT … FROM DATA BUFFER…. This ensures that the data can also be used on
different application servers.

After the conversion to Unicode

types: begin of T_VALUE_WA,
 TABNAME(30) type c,
 XCONTAINER type xstring,
 end of T_VALUE_WA,

 T_VALUE_LIST type table of T_VALUE_WA.

data: L_VALUES type T_VALUE_LIST,
 L_VALUE_WA type T_VALUE_WA,
 L_D010SINF type D010SINF,
 L_CO2MAP type CO2MAP.

* Storage of different structures in a table:
L_D010SINF-DATALG = 41.
L_VALUE_WA-TABNAME = 'D010SINF'.
export VALUE from L_D010SINF
 to data buffer L_VALUE_WA-XCONTAINER.
append L_VALUE_WA to L_VALUES.

L_CO2MAP-ID = 42.
L_VALUE_WA-TABNAME = 'CO2MAP'.
export VALUE from L_CO2MAP
 to data buffer L_VALUE_WA-XCONTAINER.
append L_VALUE_WA to L_VALUES.

 49

* Processing of table L_VALUES elsewhere in the
* Program: generic output of
* Structure components.

data: DREF type ref to data,
 L_NUMBER type i,
 L_TYPE type c.

field-symbols: <STRUC> type any,
 <COMP> type any.

loop at L_VALUES into L_VALUE_WA.

* Create appropriate data object
 create data DREF type (L_VALUE_WA-TABNAME).
 assign DREF->* to <STRUC>.

* Fill data object with content from container
 import VALUE to <STRUC>
 from data buffer L_VALUE_WA-XCONTAINER.

* Output of structure components
 describe field <STRUC> type L_TYPE components L_NUMBER.
 do L_NUMBER times.
 assign component SY-INDEX
 of structure <STRUC> to <COMP>.
 write <COMP>.
 enddo.

endloop.

9.11 Character processing

In the following example, components of type X are used for storing characters.
This is no longer possible in Unicode programs.

Before the conversion to Unicode

data: begin of L_LINE,
 TEXT1(10) type c,
 MARK1(1) type x value '00',
 TEXT2(10) type c,
 MARK2(1) type x value '00',
 TEXT3(10) type c,
 MARK3(1) type x value '00',
 BLANK(100) type c,
 end of L_LINE,

 HEX0(1) type x value '00',
 CRLF(2) type x value '0D0A'.

 50

L_LINE-TEXT 1 = 'SYSTEM: '.
L_LINE-TEXT 2 = 'USER: '.
L_LINE-TEXT 3 = 'CLIENT: '.

replace: HEX0 with SY-SYSID into L_LINE, � Unicode error
 HEX0 with SY-UNAME into L_LINE, � Unicode error
 HEX0 with SY-MANDT into L_LINE. � Unicode error

condense L_LINE. � Unicode error
concatenate L_LINE CRLF into L_LINE. � Unicode error

* Further processing of L_LINE.

After the conversion to Unicode

When using the constants of the CL_ABAP_CHAR_UTILITIES class, the use of X fields
can be avoided entirely.

class CL_ABAP_CHAR_UTILITIES definition load.

data:
 begin of L_LINE,
 TEXT1(10) type c,
 MARK1(1) type c
 value CL_ABAP_CHAR_UTILITIES=>MINCHAR,
 TEXT2(10) type c,
 MARK2(1) type c
 value CL_ABAP_CHAR_UTILITIES=>MINCHAR,
 TEXT3(10) type c,
 MARK3(1) type c
 value CL_ABAP_CHAR_UTILITIES=>MINCHAR,
 BLANK(100) type c,
 end of L_LINE,

 HEX0(1) type c,
 CRLF(2) type c.

HEX0 = CL_ABAP_CHAR_UTILITIES=>MINCHAR.
CRLF = CL_ABAP_CHAR_UTILITIES=>CR_LF.

L_LINE-TEXT1 = 'SYSTEM: '.
L_LINE-TEXT2 = 'USER: '.
L_LINE-TEXT3 = 'CLIENT: '.

replace: HEX0 with SY-SYSID into L_LINE,
 HEX0 with SY-UNAME into L_LINE,
 HEX0 with SY-MANDT into L_LINE.

condense L_LINE.
concatenate L_LINE CRLF into L_LINE.

 51

* Further processing of L_LINE.

Note: A similar version of the sample program above was found in a real
application. It is more complex than necessary and not an example of good
programming. A better solution is the following:

class CL_ABAP_CHAR_UTILITIES definition load.

data: L_LINE(133) type c.

 concatenate `SYSTEM: ` SY-SYSID
 ` USER: ` SY-UNAME
 ` CLIENT: ` SY-MANDT
 CL_ABAP_CHAR_UTILITIES=>CR_LF
 into L_LINE.

9.12 Opening Files

Before the conversion to Unicode

data: begin of STRUC,
 F1 type c,
 F2 type p,
 end of STRUC,

 DSN(30) type c value 'TEMPFILE'.

STRUC-F1 = 'X'.
STRUC-F2 = 42.

* write data into file
open dataset DSN in text mode. � Unicode error
transfer STRUC to DSN.
close dataset DSN.
Read from file

* read data from file

clear STRUC.
open dataset DSN in text mode. � Unicode error
read dataset DSN into STRUC.
close dataset DSN.
write: / STRUC-F1, STRUC-F2.

There are two reasons why the sample program is not executable in Unicode. OPEN
DATASET in Unicode programs requires a more detailed file format specification,
and only purely character-type structures can be written into text files.
Depending on whether or not the old file format still needs to be read or whether
or not it is possible to store the data in a different and new format, different
conversion solutions are suitable. Two of them are shown below.

 52

After the Unicode conversion - Case 1: New storage text in UTF-8 format

...
data: begin of STRUC2,
 F1 type c,
 F2(20) type c,
 end of STRUC2.

* convert data to text
move-corresponding STRUC to STRUC2.

* write data into file
open dataset DSN in text mode for output encoding utf-8.
transfer STRUC2 to DSN.
close dataset DSN.

* read data from file
clear STRUC.
open dataset DSN in text mode for input encoding utf-8.
read dataset DSN into STRUC2.
close dataset DSN.

move-corresponding STRUC2 to STRUC.
write: / STRUC-F1, STRUC-F2.

Storing the text in UTF-8 format ensures that the created files are platform-
independent.

After the Unicode conversion - Case 2: Old non-Unicode format must be
maintained

...
* write data into file
open dataset DSN in legacy text mode for output.
transfer STRUC to DSN.
close dataset DSN.

* read from file
clear STRUC.
open dataset DSN in legacy text mode for input.
read dataset DSN into STRUC.
close dataset DSN.

 write: / STRUC-F1, STRUC-F2.

The use of the LEGACY TEXT MODE ensures that the data in old non-Unicode format
is stored and read. In this mode, it is also possible to read and write non-character-
type structures. However, you have to take into account that loss of data and
conversion errors might occur in real Unicode systems if the structure contains
characters that cannot be displayed in the non-Unicode codepage.

 53

9.13 Formatting Lists

Later Overwriting Positioning of SY-VLINE

Bad code:

WRITE / AT 2 '일이삼'.
WRITE AT 1 sy-vline.
WRITE AT 4 sy-vline.
WRITE AT 7 sy-vline.
WRITE AT 10 sy-vline.

Should be: |일|이|삼|

Is: |일| >| |

Recommended solution:
WRITE AT 1 sy-vline.

WRITE AT 2 '일'.
WRITE AT 4 sy-vline.

WRITE AT 5 '이'.
WRITE AT 7 sy-vline.

WRITE AT 8 '삼'.
WRITE AT 10 sy-vline.

Output Using RIGHT-JUSTIFIED
Bad code:
DATA text(10) TYPE c.

text = '일이삼'.
WRITE text TO text RIGHT-JUSTIFIED.
WRITE text.

Should be: xxxx일이삼

Is: xxxxxxx일>

Recommended solution:
DATA text(10) type c.

text = '일이삼'.
WRITE text RIGHT-JUSTIFIED.

 54

Output of Complete Content
Bad code:
DATA text(10) TYPE c.
text = 'OTTOS MOPS'.
WRITE / text.

text = '가갸거겨고교구규그기'.
WRITE / text.

Should be: OTTOS MOPS

 가갸거겨고교구규그기
Is: OTTOS MOPS

 가갸거겨>x

Recommended solution:

DATA text(10) TYPE c.
text = 'OTTOS MOPS'.
WRITE / (*) text.

text = '가갸거겨고교구규그기'.
WRITE / (*) text.

Scrolling:
Bad code:

TYPES t_line(100) TYPE c.
DATA: line TYPE t_line,
 tab TYPE table of t_line.
PARAMETERS scrolcol TYPE i DEFAULT 14.

line = '이름1: xxxxxx 이름2: yyyyyy'.
APPEND line TO tab.

line = '이름1: 남명희 이름2: 조홍우'.
APPEND line TO tab.
LOOP AT tab INTO line.
 WRITE / line+scrolcol.
ENDLOOP.

Should be: 이름2: yyyyyy

 이름2: 조홍우
Is: 2: yyyyyy

 조홍우

Recommended solution:
TYPES t_line(100) TYPE c.
DATA: line TYPE t_line,
 tab TYPE table of t_line.
PARAMETERS scrolcol TYPE i DEFAULT 14.

 55

line = '이름1: xxxxxx 이름2: yyyyyy'.
APPEND line TO tab.

line = '이름1: 남명희 이름2: 조홍우'.
APPEND line TO tab.
LOOP AT tab INTO line.
 WRITE / line.
ENDLOOP.
SCROLL LIST TO COLUMN scrolcol.

Mixing Output and Buffer Length
The example refers to the database table ZCHNUMBERS in the ABAP Dictionary,
whose content is to be descriptions of the numbers 1 to 5 in English and Korean.

Bad code:
SELECT * FROM zchnumbers INTO wa ORDER BY num lang.
 WRITE wa-lang TO line(2).
 WRITE sy-vline TO line+2(1).
 WRITE wa-name TO line+3(5).
 WRITE sy-vline TO line+8(1).
 WRITE wa-num TO line+9(3) RIGHT-JUSTIFIED.
 WRITE / line.
ENDSELECT.

Should be: KO|하나 | 1 Is: KO|하나 | 1

 EN|one | 1 EN|one | 1
 KO|둘 | 2 KO|둘 | 2
 EN|two | 2 EN|two | 2
 KO|셋 | 3 EN|two | 2

 EN|three | 3 KO|셋 | 3

 KO|넷 | 4 EN|three| 3

 EN|four | 4 KO|넷 | 4

 KO|다섯 | 5 EN|four | 4

 EN|five | 5 KO|다섯 | 5

Recommended solution:

DATA: offset_tab TYPE abap_offset_tab.

APPEND 3 TO offset_tab.
APPEND 8 TO offset_tab.
SELECT * FROM zchnumbers INTO wa.
 WRITE wa-lang TO line(2).
 WRITE sy-vline TO line+2(1).
 WRITE wa-name TO line+3(5).
 WRITE sy-vline TO line+8(1).
 WRIE wa-num TO line+9(3) RIGHT-JUSTIFIED.

 56

 CALL METHOD cl_abap_list_utilities=>memory_to_display
 EXPORTING memory_data = line
 offset_tab = offset_tab
 IMPORTING display_data = disp_line.
 WRITE / disp_line.
ENDSELECT.

 57

Misuse of the System Field SY-CUCOL as a Buffer Offset
Bad code:

DATA: off type i.

AT LINE-SELECTION.
 off = sy-staco + sy-cucol – 3.
 sy-lisel+off(1) = '-'.
 MODIFY CURRENT LINE.

START-OF-SELECTION.

 WRITE / '한국'

 WRITE at 50(14) '일-이-삼-사-오'.
 SCROLL LIST TO COLUMN 20.

If you double-click the gaps between the visible Korean characters, the following is
displayed:

Should be: 012345678901234567890123456789일-이-삼-사-오

Is: 01234567890123456789012345 일 이 -사 - - -

Recommended solution:

DATA: mem_off TYPE i,
 f TYPE string.
AT LINE-SELECTION.
 GET CURSOR FIELD f MEMORY OFFSET mem_off.
 sy-lisel+mem_off(1) = '-'.
 MODIFY CURRENT LINE.

START-OF-SELECTION.

 WRITE / '한국'.

 WRITE at 50(14) '일-이-삼-사-오'.
 SCROLL LIST TO COLUMN 20.

 58

10. Glossary

byte type
The ABAP data types X and XSTRING
code
Binary encoding of letters, digits, and special characters
codepage
Set of encoded characters for the environment selected
data cluster
Grouping of several data objects (fields, structures, tables)
Dictionary
ABAP Data Dictionary
endian
The byte order of a number. Numbers are stored in memory with decreasing place
value either from left to right (big-endian format) or from right to left (little-
endian format)
front end
Presentation server in the SAP System
kernel
The Basis functions of the SAP System (written in C and C++)
NUP
Non-Unicode program: ABAP program for which the Unicode flag has not been set
NUS
Non-Unicode system: SAP System, in which each character is encoded in binary
form such that it occupies one byte
remaining length
Pertaining to a field or other character-type structure, the total length minus the
offset
surrogate area
Character supplement for characters that cannot be contained in standard Unicode
(which can only contain 65,536 characters). In addition to the standard Unicode bit
pattern, the system reads two further bytes from this area.
Unicode Fragment View
View that splits structures into similar data areas
UP
Unicode program: ABAP program for which the Unicode flag has been set
US
Unicode system: SAP System, in which each character is encoded in binary form,
such that it occupies either two or four bytes
UTF-8
Data format for communication and data exchange
XML
Extensible Markup Language: Language used to display documents on the Internet
character
Letter, digit, or special character
character-type
The ABAP data types C, N, D, T, and STRING

 59

11. Index of Key Concepts

Append 13

Assign 10, 11, 23, 24, 25

At 9

Byte- 22

Casting 25

Charlen 16

Clear 21

Concatenate 15, 21

Condense 15

Convert Text 15

Create Data 27, 28, 29

Data Types 5

Describe 18, 22

Delete dbtab 18

Export 29, 30

Fetch 18

Field-Symbols 10, 16

Find 21

Generate 21

Gen.Data Types 32

Get Bit 19

If 14, 15

Import 29

Include 17, 27

Increment 23, 25

Insert dbtab 18

Insert itab 13

Insert report 21

Loop at 13, 19

Modify dbtab 18

Modify itab 13

Move 11, 13, 14

 60

 61

Move-Corresponding 29

Numofchar 16

Offset 9, 10, 11

Open Dataset 19, 30

Operators 16

Overlay 15

Perform 10, 17

Range 10, 20, 23

Read Dataset 19

Read Table 19

Refresh 19

Replace 15, 21

Search 21

Select 18

Set Bit 19

Shift 15, 21

Split 15, 21

String Operators 15

Strlen 16

Structure 16

Transfer 19

Translate 15

Update dbtab 18

Vary 20

Varying 20

Write 16

Write To 16

XStrlen 22

